Non-homogeneous ICD optimization for targeted reconstruction of volumetric CT

نویسندگان

  • Zhou Yu
  • Jean-Baptiste Thibault
  • Charles A. Bouman
  • Ken D. Sauer
  • Jiang Hsieh
چکیده

Medical imaging typically requires the reconstruction of a limited region of interest (ROI) to obtain a high resolution image of the anatomy of interest. Although targeted reconstruction is straightforward for analytical reconstruction methods, it is more complicated for statistical iterative techniques, which must reconstruct all objects in the field of view (FOV) to account for all sources of attenuation along the ray paths from x-ray source to detector. A brute force approach would require the reconstruction of the full field of view in highresolution, but with prohibitive computational cost. In this paper, we propose a multi-resolution approach to accelerate targeted iterative reconstruction using the non-homogeneous ICD (NH-ICD) algorithm. NH-ICD aims at speeding up convergence of the coordinate descent algorithm by selecting preferentially those voxels most in need of updating. To further optimize ROI reconstruction, we use a multi-resolution approach which combines three separate improvements. First, we introduce the modified weighted NH-ICD algorithm, which weights the pixel selection criteria according to the position of the voxel relative to the ROI to speed up convergence within the ROI. Second, we propose a simple correction to the error sinogram to correct for inconsistencies between resolutions when the forward model is not scale invariant. Finally, we leverage the flexibility of the ICD algorithm to add selected edge pixels outside the ROI to the ROI reconstruction in order to minimize transition artifacts at the ROI boundary. Experiments on clinical data illustrate how each component of the method improves convergence speed and image quality.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The influence of using different reconstruction algorithms on sensitivity of quantitative 18F-FDG-PET volumetric measures to background activity variation

Introduction: This study aims to investigate the influence of background activity variation on image quantification in differently reconstructed PET/CT images. Methods: Measurements were performed on a Discovery-690 PET/CT scanner using a custom-built NEMA-like phantom. A background activity level of 5.3 and 2.6 kBq/ml 18F-FDG were applied. Ima...

متن کامل

Non-homogeneous updates for the iterative coordinate descent algorithm

Statistical reconstruction methods show great promise for improving resolution, and reducing noise and artifacts in helical X-ray CT. In fact, statistical reconstruction seems to be particularly valuable in maintaining reconstructed image quality when the dosage is low and the noise is therefore high. However, high computational cost and long reconstruction times remain as a barrier to the use ...

متن کامل

Parallelizable algorithms for X-ray CT image reconstruction with spatially non-uniform updates

Statistical image reconstruction methods for X-ray CT provide good images even for reduced dose levels but require substantial compute time. Iterative algorithms that converge in fewer iterations are preferable. Spatially non-homogeneous iterative coordinate descent (NH-ICD) accelerates convergence by updating more frequently the voxels that are predicted to change the most between the current ...

متن کامل

Study of Volumetric Flow Rate of a Micropump Using a Non-classical Elasticity Theory

The purpose of this research is to study the mechanical behavior of a micropump with clamped circular diaphragm which is the main component of drug delivery systems. In this paper, the non-linear governing equations of the circular microplate using Kirchhoff thin plate theory was been extracted based on the modified couple stress (MCST) and classical (CT) theories. Then, the non-linear equation...

متن کامل

Impact of Novel Incorporation of CT-based Segment Mapping into a Conjugated Gradient Algorithm on Bone SPECT Imaging: Fundamental Characteristics of a Context-specific Reconstruction Method

Objective(s): The latest single-photon emission computed tomography (SPECT)/computed tomography (CT) reconstruction system, referred to as xSPECT Bone™, is a context-specific reconstruction system utilizing tissue segmentation information from CT data, which is called a zone map. The aim of this study was to evaluate theeffects of zone-map enhancement incorporated into the ordered-subset conjug...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2008